

AffordabLe Lightweight Automobiles AlliaNCE

Future of Automotive Lightweighting Day

September 19, 2019

AffordabLe Lightweight Automobiles AlliaNCE

Material development - Aluminium

Dr. Jean-François Despois / Novelis

Motivations

ADITYA BIRLA

Aluminium enabling significant weight reductions

Jaguar Land Rover chose aluminium to reduce weight on the Range Rover and Range Rover Sport models – with weight savings of greater than 400kg per car

The aluminium-intensive Ford F-150 is more than 300kg lighter than previous models and achieved the truck's first-ever 5-star safety rating from NHTSA.

Lightweighting through the intensive use of Aluminium possible for:

- very high volumesaffordables cars

⇒ not only for exclusive cars!

Targets and objectives

Main criterion for material development

page 04

Material development Performance through composition & process

N°	Grade description	Short name	Material features
1	6xxx T4 High Forming Conventional (monolythic)	6xxx HF mono	High elongation, deep drawing
2	6xxx T4 High Forming Fusion ^{IM} (sandwich)	6xxx HF Fusion	High elongation, deep drawing + able for very sharp radii
3	6xxx High Strength	6xxx HS, HSv2	Higher strength in service allowing for downgauging
4	6xxx Fusion Welding (High formable variant)	6xxx LW HF	6xxx HF mono in the core + clad allowing laser welding without filler wire
5	6xxx Fusion Welding (High strength variant)	6xxx LW HS	6xxx HS in the core + clad allowing laser welding without filler wire
6	7xxx High Strength	7xxx	Significantly higher strength than 6xxx

Material development

Compatibility for close loop recycling - impact on CO₂ footprint

electricity source	g CO2 / KWh	ton of CO2 to make 1 ton of prime from Alumina		
nuclear	10	0.15		
wind	20	0.3		
hydro	10	0.15		
photovoltaic	70	1.05		
gas	400	6		
coal	1000	15		

Various scenarios of input metal mix

- Smelting operation Al₂O₃ (oxide) → Al (metal) requires 15'000 kWh to make 1 ton of primary Aluminium from Alumina
- Even smelter with green sources of electricity emit a lot of CO₂: 4 to CO₂ / 1 to of primary metal produced (carbon electrodes)

 ${\rm CO_2}$ emissions to manufacture and deliver std AL6-OUT material to Volvo for hood manufacturing

Realistic figures are probaly between 2.5 and 1 to CO_2 to produce and deliver 1 to of Aluminium sheet to OEM (while initial numbers accounted for in Alliance show 5.6 to CO_2 for 1 to of Aluminium)

Material development

FusionTM casting vs conventional DC

Direct-chill (DC) casting

- Semi-continuous process
- As the metal fills the mold (permanent, water cooled) and begins to solidify, the bottom block is lowered at a controlled rate
- Ingots are typically cast 4 to 6 at a time and weigh 10-15 tons each

Fusion[™] casting

- Simultaneous casting of different alloys, high quality interface (metallurgical bond)
- Large freedom of alloys combinations→ optimisation to the application

Core menu

- 1. High formable
- 2. High strength
- 3. Very high strength
- 4. Crash
- 5.

Clad menu

- Improved bending
 Weldable to AI or steel without filler nor gas
- . Corrosion protection
- 4.

page 07

Material characterisation

Coupon level test matrix

	Test		
	Tensile test		
	Bending, hemming		
	Shear test		
Mechanical Properties and	Notched tensile		
Forming Behaviour (as	Hole expansion		
delivered)	Deep-drawing		
	Bulge		
	Surface Hardness		
	Deep-drawing		
	Tensile test		
Mechanical Properties (in	Tensile shear		
service: BH, T6)	Notched tensile		
service. Bri, 10)	Bulge		
	Surface Hardness		
	Corrosion		
Corrosion	Phosphating		
	ED Coat		

	Test		
Desistance Coet Walding	HAZ characterisation		
Resistance Spot Welding	Tensile Shear		
Adhesive Bonding	Pre-Treatment		
	Cross section		
	Tensile Shear		
SPR plus Adhesive Bonding	Cross Tension		
	Coach Peel		
	Fatigue S-N curve		
	HAZ characterisation		
	Tensile Shear		
Lacor Wolding	Coach Peel		
Laser Welding	Cross Tension		
	Torsion		
	Welding Speed		
	HAZ characterisation		
	Tensile Shear		
MIG/MAG Welding	Coach Peel		
MIG/MAG Welding	Cross Tension		
	Torsion		
	Welding Speed		

	Test		
	Tensile flow curve in 0° and 90°		
	Tensile flow curve in 0° and 90°		
	Notched tensile, notch radius 5mm		
CAE Crash Card Data (tbc)	Notched tensile, notch radius 80mm		
	Shear test		
	High speed tensile test		
	Bulge test		
CAF foliance Cond Data (the s)?	Fatigue test		
CAE fatigue Card Data (tbc) ²	Fatigue test		

Material final properties

High formable grades

High strength grades

page

Material final properties

In-service Strength [MPa]

In-service specific Strength [MPa/(g/cm3)]

New high high strength Aluminium grades developed to compete against steel

Material utilisation example 1

Aluminium sheet door concept

Reference vehicle: compact crossover SUV,SOP 2015, 75'000 veh/y - Reference steel door: 17.70 kg/door, 54.8 €/door

Front door	Al sheet concept		
Concept	Al sheet		
Materials	Uni alloy 6x		
Door Inner	6xxx HF EDT 1.2mm		
Door outer	6xxx HF EDT 0.9mm		
Windows frame	6xxx LW HS 1.4mm		
Reinforcements	6xxx HS / 6xxx HS v2 MF 1.2, 1.4, 2.5mm		
SIB	s701 hot formed 2.0mm		
Joining	Laser welding, SPR, RSW, hemming		
Door weight	9.42 kg/door		
Door cost	84.06 €/door		
On cost vs Steel	3.55 €/kg saved		

- Improve material "utilization rate"
- Introduce close-loop recycling to reduce cost by keeping the value of the press-shop scrap and reduce CO₂ footprint
- Investigate cheaper / higher recycle content grades

Preliminary study shows realistic scenario 3 €/kg saved !

Material utilisation example 2

Aluminium sheet battery enclosure concept

- High formable and high strength grades used to make an Aluminium sheet battery enclosure
- Formability and dynamic load cases validated
- Affordable cost: 2.3 \$/kg saved compared to equivalent steel sheet solution

OEM	Model	Storage (kWh)	Structural Weight (kgs)	Total Weight (kg)	Pack Energy Density (Wh/kg)	Vehicle Curb Weight (kg)	Range (km) (EPA or WLTP)
Tesla	Model 3 Long Rng	75	75	460	163	1847	450
Tesla (2013)	Model S Standard	60	131.5	500	120	1955	335
General Motors	Bolt	60	81.3	427	140	1625	383
Jaguar	iPace	90	108	606	149	2133	377
Audi	eTron Quattro	95	Not known	684	139	2611	328
Hyundai	Kona EV	63	86.7	452	139	1715	449
Novelis	Design 1.0	90	63	554	162	N/A	375 – 500?

Sources: evspecifications.com, A2Mac1, ev-database.org, InsideEVs

page 012

Conclusion *Summary*

- New high formable (6xxx) and high strength (6xxx + 7xxx) have been characterized
- Enhanced properties compared to standard reference grades
- Data available for forming, joining and in service evaluation available
- Samples for lab trials and physical demonstrators available

- Materials have been used for demonstrators in Alliance WP5
- Materials have been used for Novelis internal demonstrators (Aluminium sheet door concept, Aluminium sheet battery enclosure concept), resulting in sheet intensive, performant and affordable solutions
- Alloy composition developed to be compatible with close loop recycling and thus significantly reduce the CO₂ footprint and keep the value in the metal (recycled in the same grade, no down-grading)

Address

Dr. Jean-François Despois

Automotive Development manager

Novelis Switzerland SA

Route des laminoirs 15

CH-3960 Sierre

Switzerland

Phone

+41 27 457 75 28

E-mail

jean-francois.despois@novelis.com

