

AffordabLe Lightweight Automobiles AlliaNCE

Future of Automotive Lightweighting Day

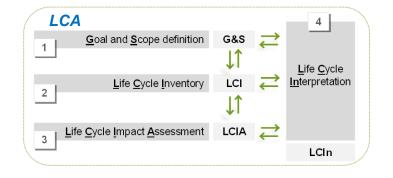
September 19, 2019

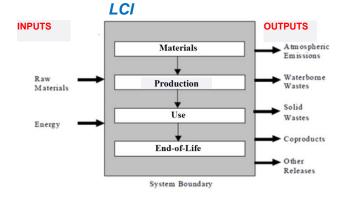
AffordabLe Lightweight Automobiles AlliaNCE

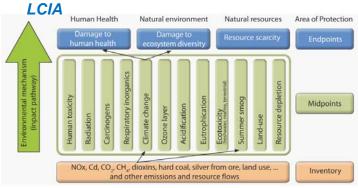
Life Cycle Assessment

University of Florence

Introduction & Objectives

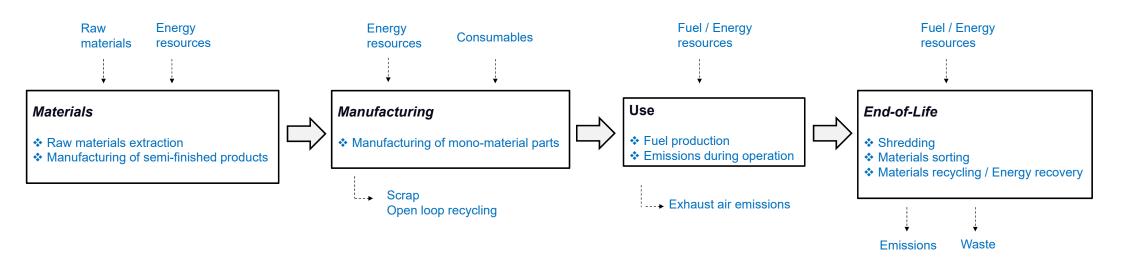

Objectives & Targets


Comparative environmental assessment of ALLIANCE vehicle modules


- Reference design

- Materials and method

 - GaBi6 software (Thinkstep)
 - Global Warming Potential kg CO2 eq (LCIA method: CML 2001)



Goal & scope definition

Functional Unit

Module installed on a gasoline vehicle over 230000 km LC mileage

System boundaries

Materials & Manufacturing stages: LCI modelling approach

LCI data collection:

- Material composition
- Manufacturing processes data
 - Material/energy consumption
 - Emissions to the environment
 - Waste production

BREAK-DOWN APPROACH

Example: Bumper System (DAIMLER)

Module Mono-material parts SCHLIESSW AND VO QUERTRAEGER ABSORBER OB LI

QUERTRAEGER VO

ABSORBER UT RE

VERSTAERKUNGSPLATTE RE

VERSTAERKUNGSPLATTE LI

ABSORBER UT LI

KONSOLE HIRE

KONSOLE HILI

■ Materials & Manufacturing stages: LCI primary data

Hood	Material composition		Manufacturing	Scrap rate	
(CRF)	Material	Mass [kg]	process	[%]	
Reference module	Steel	6.9	Stamping double effect	55.0 - 62.0	
(total mass: 7.5 kg)	Steel	0.7	Multi operation stamping	65.0 - 80.0	
	AW6111	1.9	Stamping	62.0	
Lightweight module (total mass: 3.6 kg)	AW5182	1.4	Stamping	20.0 - 58.0	
	Steel	0.3	Multi-operation stamping	30.0	

Bumper System (CRF)	Material composition		Manufacturing	Scrap rate [%]	
	Material	Mass [kg]	process	[,0]	
Reference module (total mass: 4.5 kg)	Aluminium	4.1	Extrusion	-	
	Aluminium	0.5	Stamping	-	
	AW7003	2.0	Extrusion + Forming	25.0-30.0	
Lightweight module (total mass: 3.3 kg)	AW7003	1.0	Extrusion	25.0-30.0	
	AW7003	0.3	Extrusion + Cutting	25.0-30.0	

Bumper System	Material comp	osition	Manufacturing	Scrap rate	
(DAIMLER)	Material Mass [kg]		process	[%]	
	CR340LA GI50/50-U	4.6	Doop drawing	26.5 - 47.9	
Reference module (total mass: 13.1 kg)	HR340LA GI50/50-U	2.5	Deep drawing	46.2 - 52.0	
	PSC950Y1300T	3.2	Annealing	-	
	CR330Y590T - DP GI50/50-U	2.9	Deep drawing	22.3	
Lightweight module (total mass: 11.9 kg)	CR340LA GI50/50-U	4.6		26.5 - 47.9	
	HR340LA-GI50/50-U	2.5	Deep drawing	46.2 - 52.0	
	Q&P1180	4.8		22.3 - 42.4	

Rear Floor Pan (TME)	Material composition		Manufacturing	Energy consumption	Scrap rate
	Material	Mass [kg]	process	[kWh/kg]	[%]
Reference module (total mass: 6.9 kg)	Steel	5.3	Cold stamping	-	-
(total mass. 6.9 kg)	Acryl/SBR rubber	0.9	-	-	-
	Vynil	0.3	-	-	-
	Urethane	0.4	-	-	-
Lightweight module (total mass: 5.3 kg)	Polypropylene GF 40% reinforced	3.3	Injection (IMC)	1.7-1.9	3.0 - 4.0
	Steel	1.6	Stamping	0.24-0.84	1.0
	Steel	0.3	Cold stamping	1.7-1.9	-
	Urethane	0.2	-	0.24	-

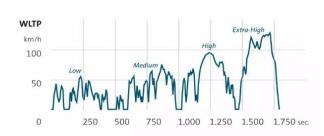
■ Materials & Manufacturing stages: LCI primary data

Rear Bumper system EU	Material cor	Manufacturing		
(TME)	Material	Mass [kg]	process	
Reference module	HCT600X	2.1		
	HC420LA	0.1	Cold stamping	
(total mass: 4.0 kg)	HC260LA	0.1	Cold stamping	
	HCT980X	1.6		
	EN AW7003 LS	1.1		
Lightweight module (total mass: 2.4 kg)	EN AW7003 HS	1.2	Extrusion	
	EN AW6082	0.1		

Rear Bumper system US	Material cor	Manufacturing	
(TME)	Material	Mass [kg]	process
Reference module (total mass: 6.9 kg)	HCT600X	1.8	
	HC420LA	1.1	Cold stamping
	HC260LA	0.1	Cold stamping
	EN AW7003 HS	4.0	
	EN AW7003 T7	0.3	
Lightweight module (total mass: 3.8 kg)	EN AW7003 T79	0.8	Extrusion
	EN AW7046	2.6	EXITUSION
	EN AW6082 T7	0.1	

Door structure	Material compo	Manufacturing	Scrap rate	
(VW)	Material	Mass [kg]	process	[%]
	CR 180BH	6.0		45.0
	CR4	10.7		45.0
	CR210LA+GI40/40-U	1.3		60.0
Reference module (total mass: 35.2 kg)	CR1350Y 1700Z-MS	8.0	Deep drawing	90.0
	CR300LA+GI40/40-U	5.9		55.0
	CR240LA	2.0		60.0
	DP-K900Y1180T-DH	1.3		60.0
	Aluminium TL 094 T6 (600°)*	3.2	Deep drawing	45.0-60.0
	Epoxy Resin GF 42% reinforced	5.2	Resin Transfer Molding	45.0
5.4	CR210LA+GI40/40-U	0.6		60.0
Reference module (total mass: 24.6 kg)	MBW-K 1900	8.0		90.0
	CR300LA+GI40/40-U	5.8	Deep drawing	55.0
	Aluminium TL 114 T6 (600°)**	0.7		60.0
	DP-K900Y1180T-DH	1.0		60.0

Door structure	Material composition		Manufacturing	Energy consumption [kWh/kg]	Sc <u>rap</u> rate
(VOLVO)	Material	Mass [kg]	process	[kwn/kg]	[%]
	Steel - DC06	16.8			49.8-60.2
Reference module (total mass: 19.7 kg)	Aluminum 6060	0.2	Deep-Drawing	0.22 - 0.28	33.1
	Steel - DP1000	1.7			33.6
	Steel - DP600	1.0			-
	DIN EN 6016/e170	3.0			50.7
Lightweight module (total mass: 11.0 kg)	DIN EN 6016/e600PX	3.7	Doon Drowing	0.22 - 0.28	33.3-60.2
	DIN EN 6016/e200	2.6	Deep-Drawing		52.1
	Steel - DP1000	1.7			33.6


Use stage: LCI modelling approach

Well-To-Tank (WTT)

LCI data: Fuel consumption and electricity associated with the module [kg]

$$FC_{module} = \frac{FRV * m_{module} * mileage_{use}}{10000} * \rho_{fuel}$$

FRV [I/100 kg*100 km] (Source: Del Pero et al., 2017)

LCI data: CO₂ emissions associated with module operation (CO₂ module) [g]

$$CO_{2 \, module} = CO_{2 \, km} * mileage_{use} * \frac{FC_{module}}{FC_{neh}}$$

$$FC_{veh} = \frac{FC_{100km}}{100} * mileage_{use} * \rho_{fuel}$$

$$FC_{100km} = \frac{CO_{2km}}{2370} * 100$$

 CO_2 km = 192 [g/km] (European Env. Agency - EEA, 2018)

2370 = mass of CO₂ per litre of petrol [g/l] (Amit et al., 2006)

■ Use stage: LCI primary/secondary data

	Propulsion technology	Vehicle segment	Mileage [km]	FRV [l/100km*100kg]	CO ₂ emissions [g/km]
Hood (CRF)		Small car		0.168	96
Bumper System (CRF)		Sub-compact Sport Utility Vehicle	230000	0.170	150
Bumper System (DAIMLER)		Mid-size Sport Utility Vehicle		0.178	221
Rear Floor Pan (TME)	ICE gasoline	Sub-compact Sport Utility Vehicle		0.170	144
Rear Bumper System EU (TME)	turbocharged	Sub-compact Sport Utility Vehicle	200000	0.170	144
Rear Bumper System US (TME)		Sub-compact Sport Utility Vehicle		0.170	144
Door Structure (VOLVO)		Full-size Sport Utility Vehicle		0.178	192
Door Structure (VW)		Large Multi Purpose Vehicle		0.179	159

■ End-of-Life stage: LCI modelling approach

2000/53/EC directive & ISO standard 22628:2002

- 1. Depollution
- 2. Dismantling
- 3. Shredding
- 4. Post-shredding

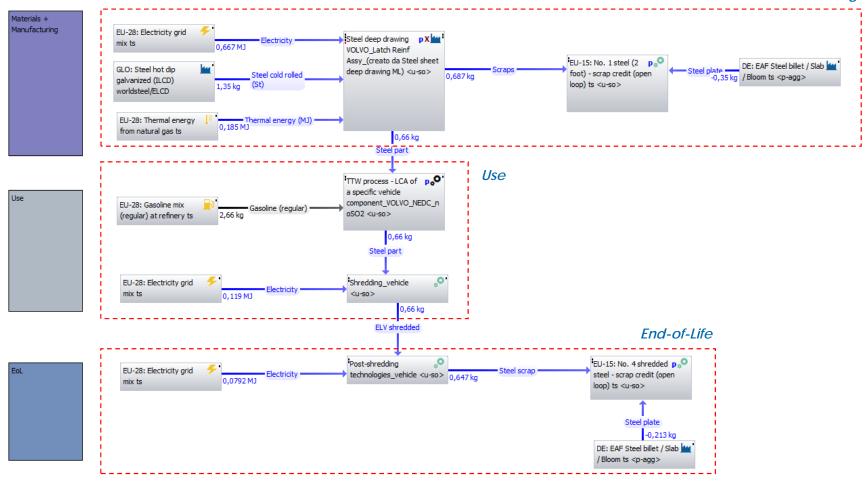
EoL processes

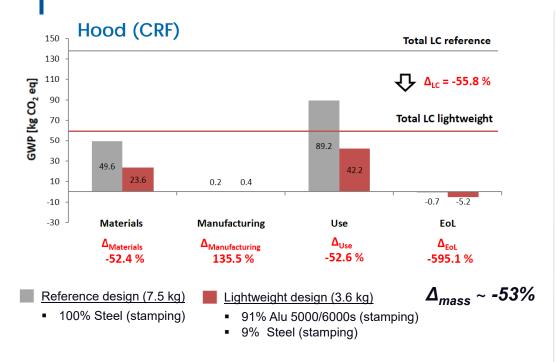
- ✓ Shredding
- ✓ Materials separation
- ✓ Materials recycling

Shredding

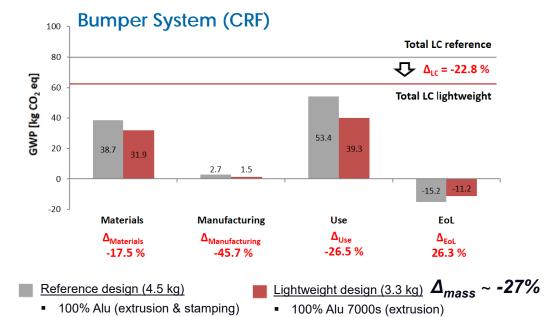
Materials separation

Materials recycling

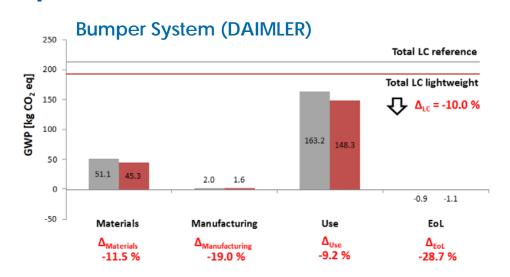




	d-of-Life stage: secondary data		Electricity for shredding [MJ/kg]	Electricity for materials sorting [MJ/kg]	Separability rate [%]	Substitution ratio
	Hood (CRF)	Steel parts			98	33
	Bumper System (CRF)	Aluminium parts			98	42
	Bumper System (DAIMLER)	Steel parts			98	33
	Deer Fleer Ben (TMF)	Steel parts			98	33
<u> </u>	Rear Floor Pan (TME)	Polymeric materials parts			-	-
Ę,	Rear Floor Pan (TME) Rear Bumper System EU (TME) Rear Bumper System US (TME) Door Structure (VOLVO)	Steel parts	0.40	0.40	98	33
Ä		Aluminium parts	0.18	0.12	51	42
Ë		Steel parts			98	33
Ľ.		Aluminium parts			51	42
		Steel parts			98	33
		Aluminium parts			51	42
	Door Structure (VW)	Steel parts			98	33
	Hood (CRF)	Steel parts			98	33
	ricou (Orti)	Aluminium parts		0.40	98	42
	Bumper System (CRF)	Aluminium parts			98	42
⊨	Bumper System (DAIMLER)	Steel parts			98	33
유 등	Rear Floor Pan (TME)	Steel parts			98	33
Ä	real ricorran (riviL)	Polymeric materials parts	0.18		-	-
	Rear Bumper System EU (TME)	Aluminium parts	0.10	0.12	51	42
LIGHTWEIGHT	Rear Bumper System US (TME)	Aluminium parts			51	42
	Door Structure (VOLVO)	Steel parts			98	33
	Door Structure (VOEVO)	Aluminium parts			51	42
	Door Structure (VW)	Steel parts			98	33
	Door Structure (VVV)	Polymeric materials parts			-	-

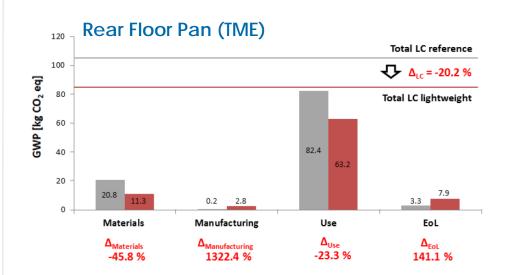

■ LCI GaBi modelling: Door Structure (VOLVO) - Latch Reinf Assy

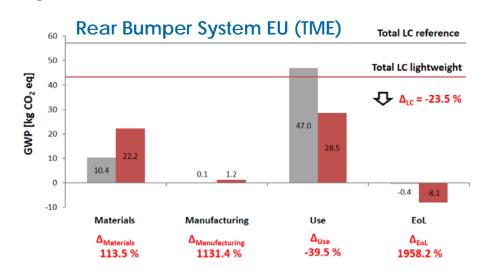
Materials & Manufacturing

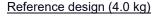


- About 56% GWP reduction mainly in use and materials stages
- GWP reduction in use stage: lower FC and operation CO₂ emissions
- GWP reduction in Materials stage: 53% saving in materials used and environmental credits due to closed loop recycling of scrap
- GWP reduction in EoL stage: higher substitution factor of primary material for Alu

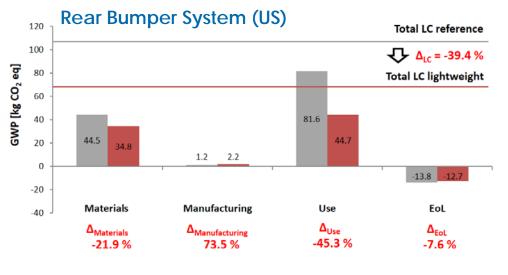
- About 23% GWP reduction mainly in use and materials stages
- GWP reduction in Materials stage: 27% mass decrease
- GWP increase in EoL stage: lower mass of Alu forwarded to recycling activities in the lightweight design alternative

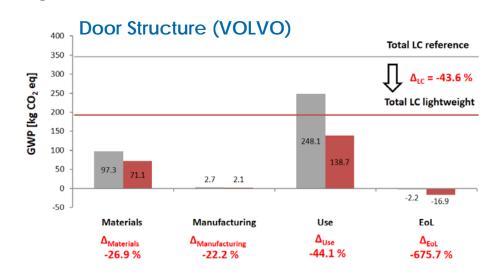


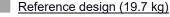

Lightweight design (11.9 kg)

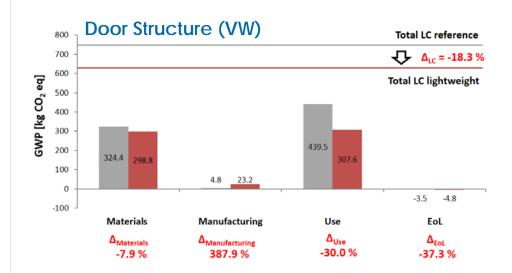

 $\Delta_{mass} \sim -9\%$

- 100% Steel (deep drawing)
- 60% Steel (deep drawing)
- 40% Steel Q&P (deep drawing)
- 10% GWP reduction mainly in use and materials stages
- GWP reduction in Materials stage: 9% saving in materials used and similar GWP of conventional and Q&P steel
- EoL stage: negligible impact reduction achieved through lightweight design solution

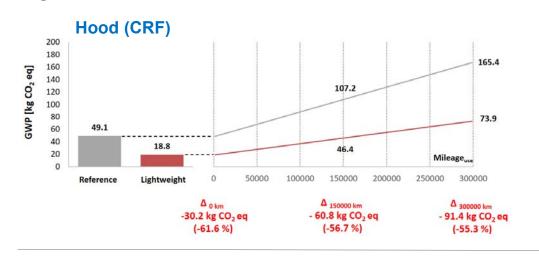

- Reference design (6.9 kg)
 - 76% Steel (stamping)
 - 24% Acryl/SBR-Vynil-Urethane
- Lightweight design (5.3 kg) $\Delta_{mass} \sim -23\%$
 - 62% PPGF40
 - 34% Steel (stamping)
 - 4% Urethane
- About 20% GWP reduction in use and materials stages
- GWP reduction in Materials stage: lower mass-specific impact of PPGF40 with respect to steel
- GWP increase in EoL stage: higher amount of polymeric materials forwarded to incineration

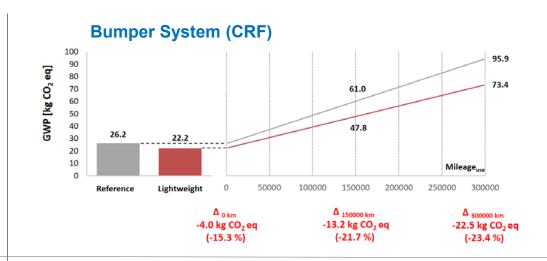

- Lightweight design (2.4 kg)
- $\Delta_{mass} \sim -40\%$

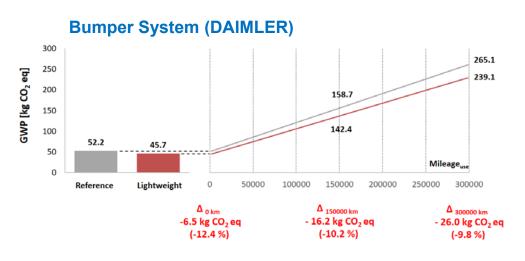

- 100% Steel (deep drawing)
- 100% Alu 6000/7000s (extrusion)
- About 24% GWP reduction in use and EoL stages
- GWP increase in Materials stage: higher impacts of Alu in the manufacturing of semi-finished products
- GWP reduction in EoL stage: lower energy consumption of recycling processes and higher substitution factor of primary material for Alu

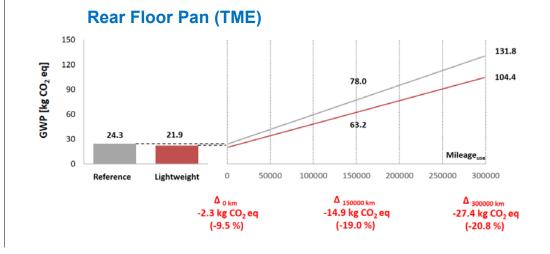

- Reference design (6.9 kg)
- Lightweight design (3.8 kg)
- $\Delta_{mass} \sim -45\%$

- 58% Alu 7000s (extrusion)
- 42% Steel (stamping)
- 100% Alu 6000/7000s (extrusion)
- About 39% GWP reduction in use and materials stages
- GWP reduction in Materials stage: about 45% saving in materials used (lower amount of Alu)
- GWP increase in EoL stage: mass reduction makes that environmental credits from Alu recycling are lower lower

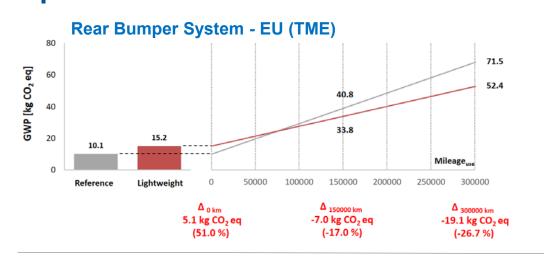

- 99% Steel (deep drawing)
- 1% Alu 6000s (deep drawing)
- Lightweight design (11.0kg)
- $\Delta_{mass} \sim -44\%$
- 85% Alu 6000s (deep drawing)
- 15% Steel (deep drawing)
- About 44% GWP reduction mainly in use, materials and EoL stages
- GWP reduction in Materials stage: 44% saving in materials used and environmental credits due to closed loop recycling of scrap
- GWP reduction in EoL stage: lower energy consumption of recycling processes and higher substitution factor of primary material for Alu

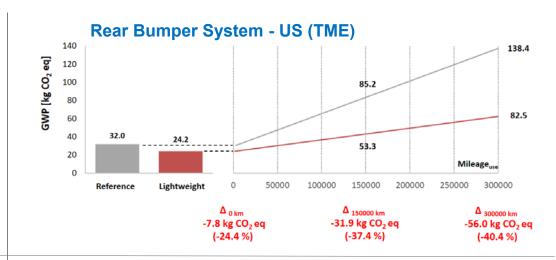


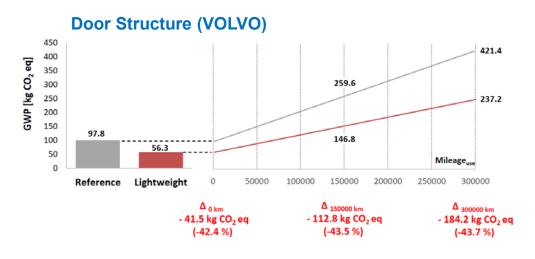

- Reference design (35.2 kg)
- Lightweight design (24.6 kg)
- $\Delta_{mass} \sim -30\%$

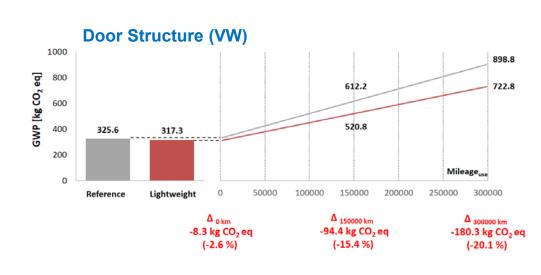

- 100% Steel (deep drawing)
- 63% Steel (deep drawing)
- 21% Epoxy resin GF42
- 16% Alu 6000s (deep drawing)
- About 18% GWP reduction in use and materials stages
- GWP reduction in Materials stage: 30% saving in materials used and environmental credits due to closed loop recycling of scrap
- GWP increase in Manufacturing stage: higher energy intensity of manufacturing processes of epoxy resin composite component

LCIA - Break-even point analysis









LCIA - Break-even point analysis

Conclusion

- Comparative LCA between reference and lightweight design versions of the modules
- LCA of reference vehicle for the ALLIANCE project
- GWP reduction at module level within the range 10-56 %
- Implementation of innovative design at full-vehicle level: prediction for GWP reduction of 6-8 %

Future of Automotive Lightweighting Day

Thank you for your attention

MOVING research group

Department of Industrial Engineering University of Florence Via di Santa Marta 3 - Florence

Massimo Delogu Francesco Del Pero massimo.delogu@unifi.it francesco.delpero@unifi.it

Tel: +39 055 2758769