

European Commission

AffordabLe Lightweight Automobiles AlliaNCE

Future of Automotive Lightweighting Day

September 19, 2019

Horizon 2020 European Union funding for Research & Innovation

AffordabLe LIghtweight Automobiles AlliaNCE

Support Tools Full vehicle assessment model Dinesh Thirunavukkarasu, ika – RWTH Aachen University

Motivation

- During the last years a lot of developments have been carried out in the field of light weighting (material and manufacturing technologies)
- The large number of technologies makes it difficult to choose the right technology at the right place
- Uncertainty of technological impact is high in the early concept phase of the vehicle development process
- Light weighting is not limited to achieving the highest weight reduction, it is rather a multidisciplinary approach considering:
 - Structural efficiency
 - Economical impact
 - Environmental impact
 - Secondary reduction potential

=6 % GWP

page 03

Development Target

Holistic method to assess lightweight technologies from a life-cycle perspective at an early concept stage

page 04

Concept of the Full Vehicle Assessment Model

Results of a Typical Use Case

AffordabLe LIghtweight Automobiles AlliaNCE

Results of a Typical Use Case – Weight Reduction

	Reference Variant	Lightweight Variant	Δ	
	[kg]	[kg]	[kg]	[%]
Drivetrain	284.7	265.7	19.0	-6.7
Chassis	244.2	221.9	22.3	-9.1
Body	493.5	362.6	130.9	-26.5
E/E*	34.9	29.7	5.2	-15.0
Interior*	198.4	158.7	39.7	-20.0
Sum	1255.7	1038.6	217.1	-17.3

Lightweight Vehicle m = 1038.6 kg

Interior

15%

E/E

3%

Body

35%

Results of a Typical Use Case – Environmental Impact

	Reference Variant	Lightweight Variant*	Δ
	[GWP]	[GWP]	[%]
Production	8469	8562	+1.10
Use	41428	37925	-8.46
End of life	-2976	-3219	-8.17
Sum	46921	43268	-7.79

Results of a Typical Use Case – Economical Impact

Summary & Lessons learned

- Holistic, multi-parametric assessment methodology is required to fully evaluate the impact of light weighting technologies
- Full vehicle assessment model is a tool to perform a pre-assessment of light weighting technologies at a early concept stage
- The accuracy of the model depends on:
 - 1. The available data in the life cycle data base
 - 2. The maturity of the analysed technology (use case database)
- Validation of results required by actual layout of the light weighting technology → if necessary continuous adaption of model

Thank you very much for your attention!

This presented results were developed within the ALLIANCE project and received funding of the framework Horizon 2020 by the European Commission.

