

European Commission

Horizon 2020 European Union funding for Research & Innovation

AffordabLe Lightweight Automobiles AlliaNCE

ALLIANCE Final Event

September 19, 2019

Horizon 2020 European Union funding for Research & Innovation

AffordabLe LIghtweight Automobiles AlliaNCE

Mass Manager Software Tool (WP1.3)

Neil McGregor / Ricardo UK

Motivation & Objectives

- Management and reduction of complete vehicle mass is challenging ('000s of parts, modules, systems)
- Achieving a complete vehicle mass target requires optimization of many parts – the question is "which parts", "how much mass", "how can lightweight parts (and their technologies) be scaled from one vehicle to another?"
- Mass Manager is a complete vehicle Bill Of Materials data manager, encompassing statistical mass benchmarking tools, lightweight technology database and optimiser

Mass Manager Software Tool Overview

vehicle level

04

Mass Manager, example of scalability function

Example for scaling lightweight, aluminium front door concept, developed on XC90 and applied to VW Golf (reference vehicle)

Mass Manager, example of scalability function

a

AffordabLe Lightweight Automobiles AlliaNC

Volvo XC90

Alliance reference Vehicle

- Aluminium Delta % Steel Mass (kg) 15.768 8.5 -32.8% Cost (€) 47.91 (*1) 87.13 +182% GWP CO₂ 283 (*2) 176.43 -37.7% kg
- Mass Manager scalability function enabled the estimation of Reference vehicle performance (mass, cost, GWP) based on Volvo XC90 performance and a statistical dataset

*1: Data source: "ALLIANCE_D_1-2.pdf" *2: Data source: calculated by Unifi

Mass Manager, Use Case Database in "Builder" Tool

Lightweight Vehicle Builder Tool

Weight reduction of existing vehicle or develop new/cleansheet vehicle

Technologies can be *scaled* or *transformed* from and to different vehicle/components using the regression functions identified in Comparator tool

Data stored in MM database for each technology:

- Weight saving (kg)
- Cost £
- GWP (g/CO₂)
- Performance risks (NVH, safety, repair...)
- Component requirements

 Total vehicle weight saving potential and breakdown

- Potential impact on cost and vehicle performance
- Updated Vehicle BoM

Key Benefits

- Complete vehicle weight management at all vehicle development phases
- Rapidly apply and assess lightweight technologies and effects at complete vehicle level
- Central knowledge / database

Use Case Database (lightweighting

technologies)

Lessons learnt – scalability results are only as good as the quality of the statistical dataset

 Throughout the project we have "learned" which dimension parameters are best/appropriate to use for different components

Lessons learnt – scalability results are only as good as the quality of the statistical dataset

- a2mac1 provides a good data sample but not for every vehicle segment (trucks, low number of Evs)
- a2mac1 provides mass and dimension at module level (e.g. no breakdown for BIW, therefore difficult to assess Toyota spare wheel module in Mass Manager)
- Requirement to calculate cost and GWP data for statistical benchmark vehicles (time consuming but idea is to create a robust database)
- Difficult to get *Transferability* methodology to give robust results (only when considering parts with similar performance requirements)

Thank you !

Ricardo UK Shoreham Technical Centre Shoreham-by-Sea BN43 5FG UK •+44 (0) 7843 501 517

Neil.mcgregor@ricardo.com

